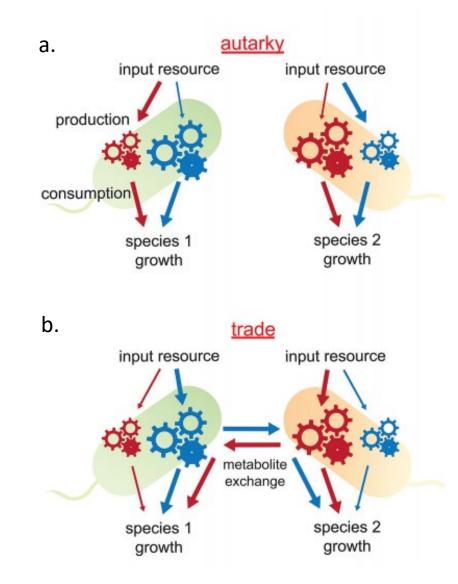

Microbial Biotech for Feed and Food for the Future

Willy Verstraete

The microbial world

Viruses /Bacteria /Yeast /Fungi /Protoza/Algae

- They communicate and connect
- They are very efficient
- They are 99.9999% positive


Central Feature :

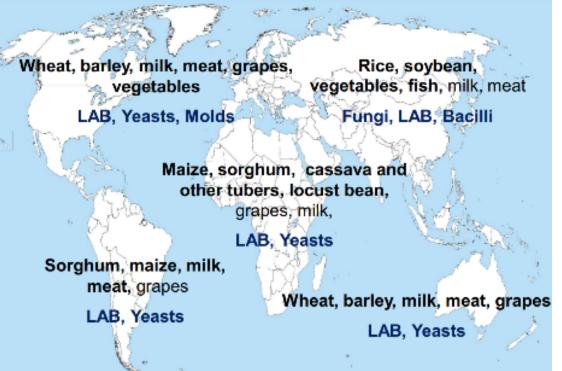
THE MARKET ECONOMY is also applicable to THE MICROBIAL WORLD

Economists studying microbial metabolism (Tasoff *et al*. 2015)

By trading with one another, microbes clearly grow better! Each part of the process is done with <u>more accuracy and</u> <u>efficiency</u> by multiple species compared to a single species.

Sounds evident / ...yet

The choice to make


Mixed culture microbiology / spontaneous fermentation /terroir fermentation // "nature's best practice NBP " fermentation

Lambiek bier

Lambick is een streekbier uit de Zennevallei in België. Het wordt nu nok echter duor enkele benawerijen buiten deze streek gebrouwen.

"Beer / Wine/ Kombucha/Choucroute / Cheese "

THE MICROBIOME !!

The choice to make

Conventional industrial fermentation Precision microbiology

Precision fermentation

<u>Malus</u> :

Complex / high Capex Often low in efficiency

<u>Bonus</u>: Certainty –Deterministic

Warren Belasco 2006 : "Meals to come "

Be very aware of the ongoing duality :

a) <u>Malthus</u> related thinkers / **dystopian mindset** the limits of growth

People are programmed to DISTRUST

b) <u>Marquis de Condorcet</u> related thinkers / **utopian mindset** the techno-cornucopian approach

The sky is the limit : microbial food / synthetic meat ...

Current mindsets :

Plants <u>directly</u> as food : in case we all become vegetarians we get 10 x more space for 'wild ' plants; they are of value for the health of our ecosystms

We create far too much <u>entropy</u>; we must become much more efficient with our resources ; certainly in our feed and food production

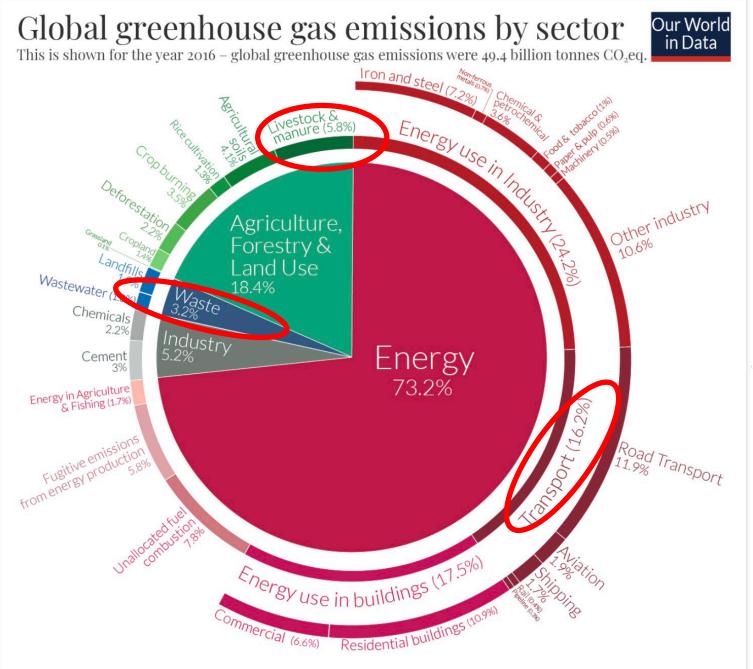
THIS BOOK IS A TOUR DE FORCE. ADAM GRANT, New York Times bestselling author of Third Age

A DEEP HISTORY, FROM THE STONE AGE TO THE AGE OF ROBOTS

JAMES SUZMAN

7

Current urgent issues


• Energy supply : We must think 'renewable'

Nitrogen = MAJOR player in the global warming
 1 kg reactive N = 2 L fossil fuel by the Haber Bosch process
 4% of all fossil fuel goes to N fertilizers

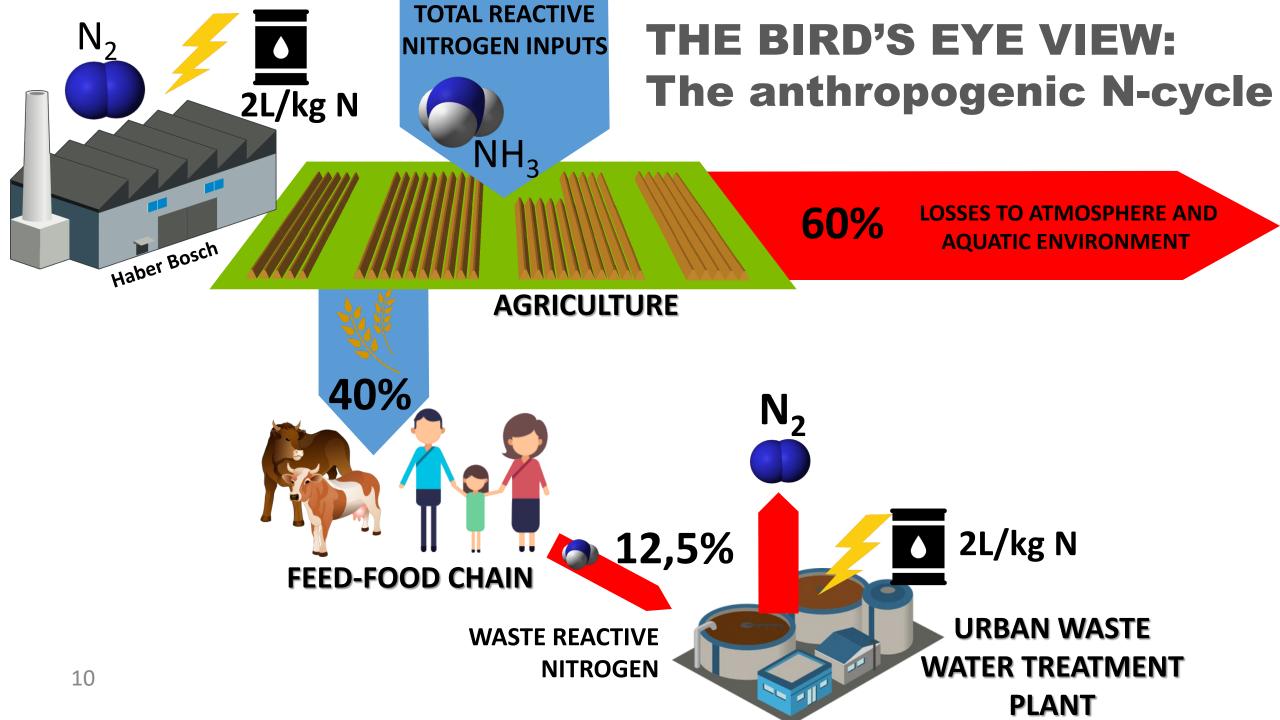
Timmermans to end EU climate 'contradictions'

- Every person needs some 100 g quality protein per day = 14 g reactive Nitrogen per day
 - = 200 L fossil fuel equivalent per year

OurWorldinData.org – Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

GREEN HOUSE GASES

Energy: 73% of which 16 % transport


Waste(water) treatment: 3.2 % of which 1% is related to urine N (N20 production)

Agriculture 18% of which 5,8% animal husbandry and manure

NITROGEN IN GLOBAL WARMING (AMMONIA & N-OXIDES)

CA 10 % !!! N2O

Part of animal meat in global warming Ca 5-15% (Pikaar et al. 2023)

COP 27 in 2022

• Antonio Guterres

"We ride on a highway to the climate hell "

- Feed and food production should reflect on how to IMPROVE !!

Microbial Biotech

The strengths :

• TOP Speed & Yield :

doubling time : hrs

yield : 1Kg carbohydrates – aerobic metabolism – 0,3 - 0,4 Kg cell dry weight

of which 70-90% can be protein (optimal amino acids & highly digestable) Food Conversion Factor: cattle /pigs/poultry/fish : 4-8 dairy products : 8-13 insects : 10

microbes : 0,2-0,4 !!!

• In case of 'mixed cultures' : Full use of all components (starch , pectines, celluloses , ...) ; they are very adaptive and exhaust all energy sources / little waste left

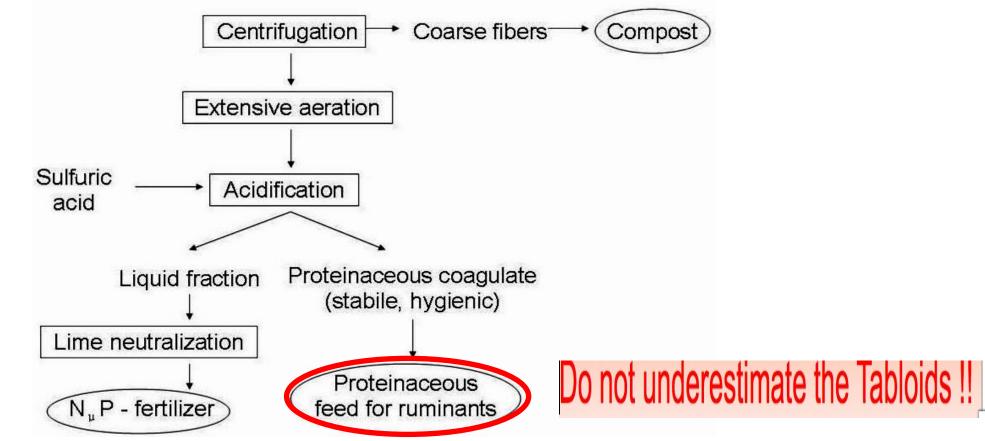
Microbial Biotech

The weaknesses :

- Normally no texture you get a paste of single cells
- Difficult to harvest : 1-5 um sized
- Needs rapid processing : dewatering / sterilization /...
- Very strict regulatory aspects : EFSA 'novel foods '

Overview

• The past: Our personal experiences in Resource Recycling /Feed-Food


• The present: The 'GREEN DEAL'

• The future: The need for education/communication

Cyclic economy in intensive husbandry 50 years ago

Piggery manure to single cell protein (SCP) to feed (Beernem (1974) IWA/R&D prize; LabMET).

Piggery manure 8 % DM

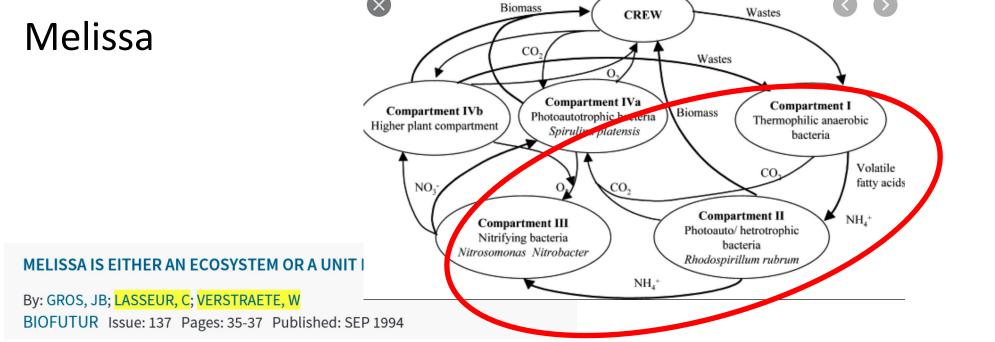
The past: Our experiences with Recovery

• The year 1985 : The **Rhodospirillaceae** "fascination "

Short Communications | Published: January 1985

Chemical control of eucaryotic and blue-green algae in anaerobic photoreactors culturing Rhodospirillaceae

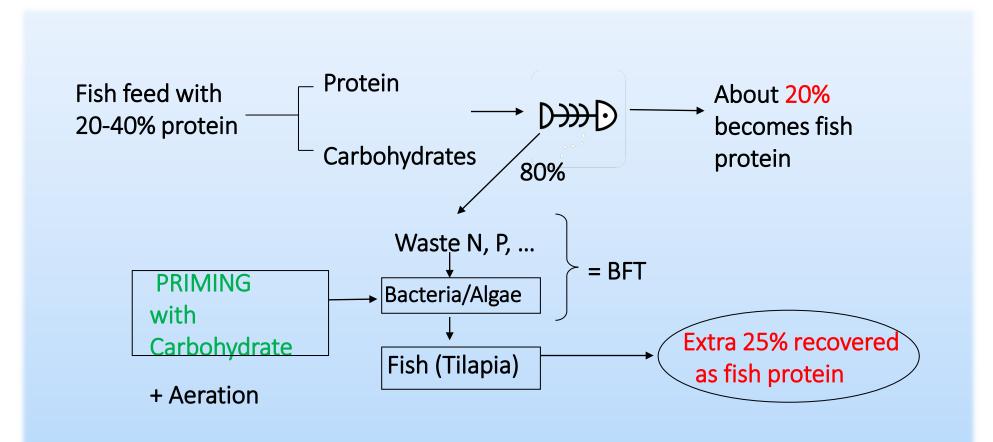
L. Segers & W. Verstraete


Experientia 41, 99–101(1985) Cite this article

Take home: Nice new food but ZERO interest at that time

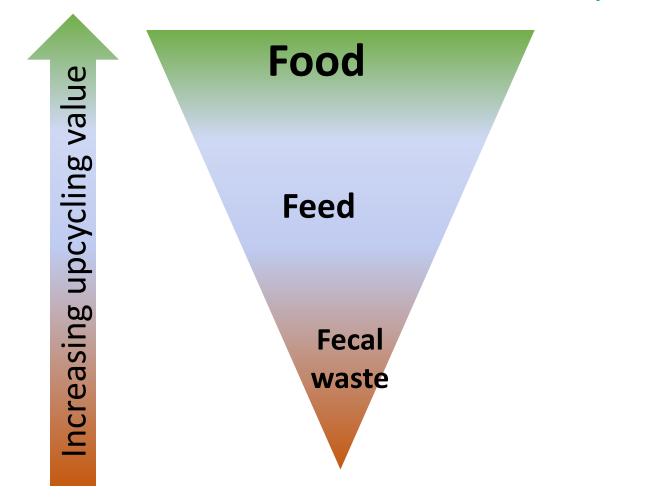
The past: Our experiences with Recovery

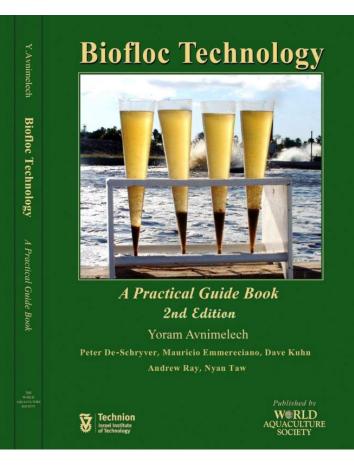
• The 90's : The combi of (AD + Photobacteria + Nitrifiers) in



Take home : In space , we can close the cycle / on our planet : the market economy is as yet reluctant

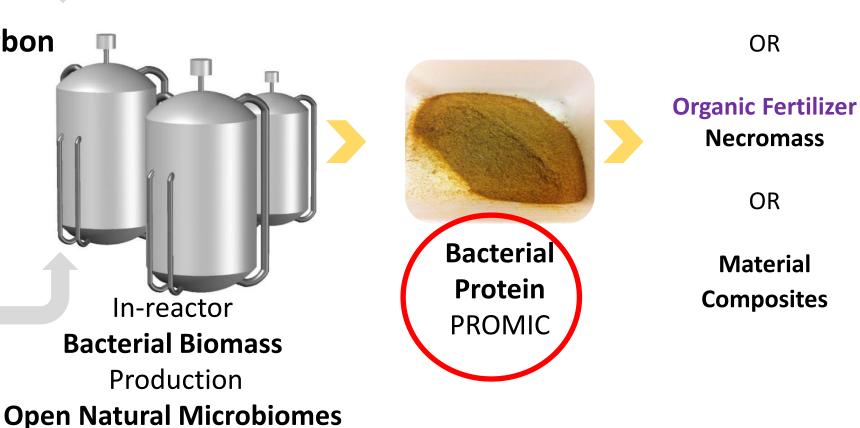
The past: Our experiences with Recovery


- The year 2003: Outcry from Aquaculture : why not in situ direct upcycling of fish fecal matter Sorgeloos Avnimelech
 - The biofloc technology / Ever since: a growing application


The Aquaculture BioFloc Technology Direct recycling of fecal N as feed in aquaculture

(Crab et al., 2007; Aquaculture 270: 1-14; LabMET; (De Schryver et al. 2008; Water Res. 42: 1-12; LabMET)

From fecal to feed to food !! This time Full acceptance by the public !



Food /Animal Feed

2010 --- Upgrading of Carbon /CO2 by Aerobic fermentation to BACTERIAL (1 um) biomass

Organotrophic route

- Oxygen
- (Secondary) Organic Carbon
- (Recovered) Nitrogen Autotrophic route
 - Oxygen
 - · (CO₂)
 - * Recovered Nitrogen
 - <u>Hydrogen</u>/CO/CH₄

Spontaneous BACTERIAL Protein / Mixed Culture State of the Art

<u>Positive</u> :Top protein quality and technically do-able at 'almost' competitive prices Neutral : 1um cells are cumbersome to harvest and process (dewater/preserve/<u>dry</u>) <u>Negative</u> :Plenty of resistance against 'non-pure' (???) mixed microbial cultures EFSA

Consider : *Top tasty french cheeses produced by open fermentation from raw milk*

At present : Regulatory aspects requiring <u>total absence</u> of any type of biological 'UNWANTED' species = NO GO !!!

Sofar: There is hope for <u>a future regulatory perspective</u> ie absence of rDNA of 'unwanted' microbes could suffice (GMM.pdf)

Axenic BACTERIAL Protein State of the Art

Positive : well defined outcome

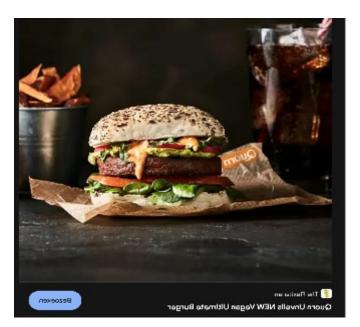
Neutral : 1um cells are cumbersome to harvest and process (dewater/preserve/ dry)

<u>Negative</u> : costs of sterilization / infrastructure / treatment of effluent

At present :

- Industrial production is 'announced' (Solar Food-H2 /Unibio-CH4/Calysta-Adisseo-CH4 /) (Marcellin et al. 2022)
- Critical factors are : costs (generally of the order of 1,5-2,0 Euro per kg ;Abbadi et al. 2021)
 + environmental aspects (odour !) + regulatory issues

Note : Solein grown with CO2 and electricity H2 has received regulatory approval from the Singapore Food Agency 2022


AXENIC MICROBIAL (>5um) Biomass and AgroFOOD

YES PROVIDED <u>EASY to Harvest & Process</u> and also <u>'Familiar to the consumer</u>

How Yeast Is Used in Cooking

YEAST

Wat is het verschil tussen chlorella en spirulina? ALGAE

Quorn Burger-Fungal biomass FUNGI based on yeast /fungi/algae will increase as part of the 'protein shift ' (Pikaar et al . 2023)

Overview

• The past: Our personal experiences in Resource Recycling /Feed-Food

• The present: The 'GREEN DEAL'

• The future: The need for education/communication

Key feature of CYCLIC ECONOMY:

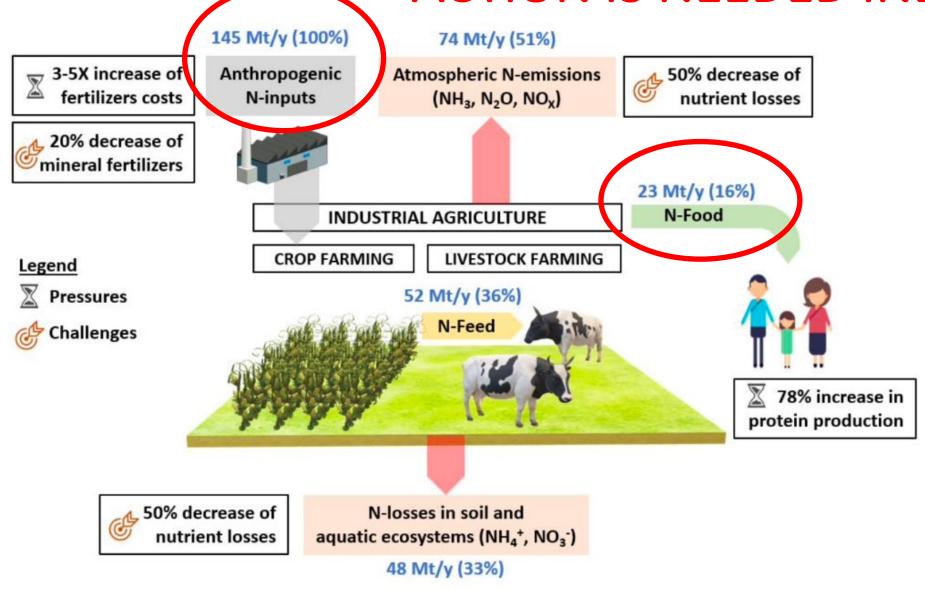
Open <u>naturally</u> evolving mixed cultures =microbiomes

are ESSENTIAL to reach the SDG at reasonable costs

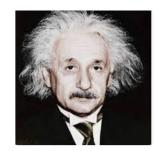
• We need their 'intelligence ' and adaptability eg in

various types of water treatment systems !!

- They empower our 'immunology' Bart Lambregt VIB
- EFSA and the regulators should not fear : they, and the risks they represent , can be managed adequately


Editorial: Microbial Biotechnology for Sustainable Development Goals 🛛 🔂 Open Access 🛛 😨 🛈

Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals


Jo De Vrieze 🕱, Thijs De Mulder, Silvio Matassa, Jizhong Zhou, Largus T. Angenent, Nico Boon, Willy Verstraete

First published: 20 April 2020 | https://doi.org/10.1111/1751-7915.13575 | Citations: 1

Matassa et al. (2022). - The EU Green Deal and N ACTION IS NEEDED INDEED

NEW & NOVEL :

Grasland Based Biorefinery:

Go for robust and sustainable systems !

Nitrification is the cause of a major part of the N-problems Try to fully develop the Biological Nitrification Inhibition (BNI) cropping system (Villegas et al. 2020)

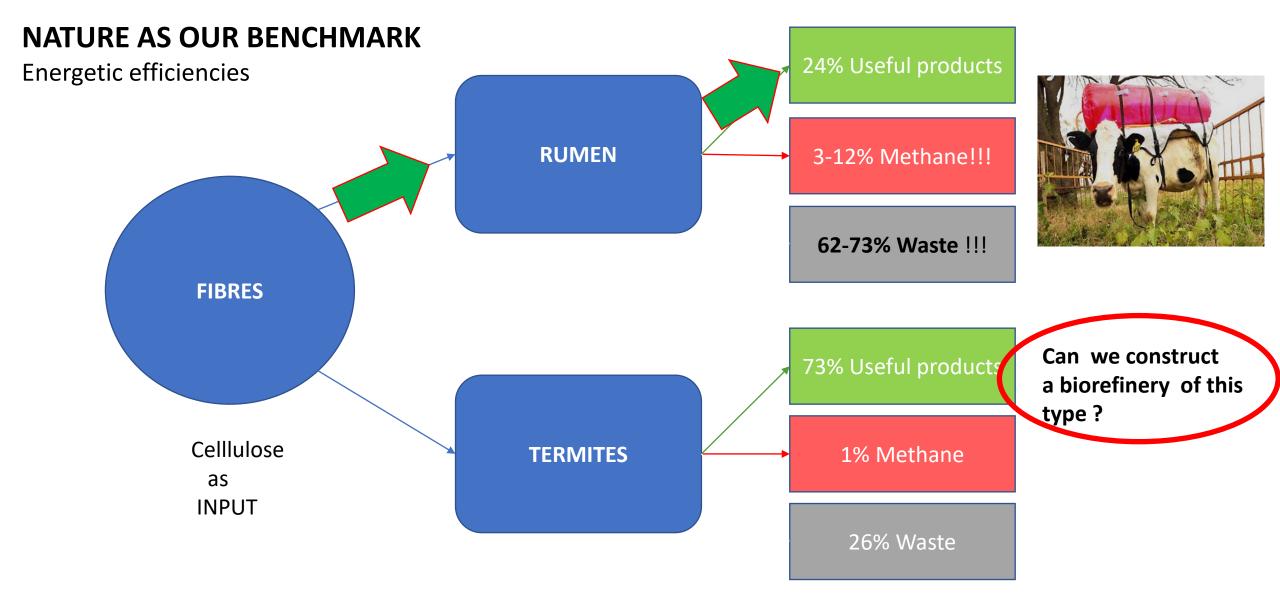
New EU Policy: GRASSLAND-BIOREFINERY

Billund

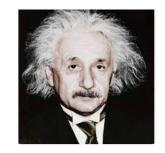
×

DRINKING WATER

ANAEROBIC DIGESTION-MAKING BIOGAS -MAKING ENERGY


FIBERS

Tim Pullen


BIOMETHANE

FIBER FERMENTED TO FOOD

Beauchemin, K.A. and McGinn, S.M., 2008; Prins et al., 1991; Zimmerman et al., 1982; Ritchie et al., 2017; Verstraete et al., 2021; Britt et al., 2003

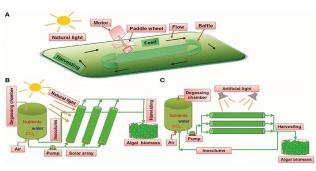
NEW & NOVEL

• Graslands + biorefinery

Go for robust and sustainable systems

+ Ferment cellulose to food !!

• Novel proteins :


Why not implementing Biological Nitrogen Fixation

Biologically Fixed Nitrogen

- Legumes / Soya in Europe : Now promoted as magic in Flanders !!!!
- Spirulina etc : Why not ?

 Fiber and free-living N-fixing bacteria – my chouchou

vib.be - Soja in Vlaandere

Martinus Beijerinck (1851–1931), ^d discoverer of the genus *Azotobacter*

Note: Orthodox vegetarians should go for bio-N based protein !!!

Biologically Nitrogen Fixation (BNF)

Be aware, nitrogen fixation comes <u>always</u> at a cost !!!

It takes 2,0 L of fossil fuel equivalent per kg N in Haber Bosch

It takes 20 kg carbohydrate per kg N in root nodule-rhizobia (N-fixing soya = minus 75x20=1500 kg carb equivalent per ha)

It takes 50 kg carbohydrate per kg N in free living aerobic bacteria

Yet, the carbs are 'renewable'

Overview

• The past: Our personal experiences in Resource Recycling /Feed-Food

• The present: The 'GREEN DEAL'

• The future: The need for education/communication

Upgrading <u>from secondary resources</u> should follow paths in which the consumer has **confidence**:

a) The involvement of **heat** / fire (CHP, ashes,..)

b) Transition into a gas phase (methane, CO2, NH3, ...)

c) Change in outlook (mushroom on horse manure, plants on soil fertilized with feces, ...)

GO WITH THE CURRENT !!

Paris, Microbes and Sustainability

By making microbial protein in reactors, 6% of all land surface now used under intensive agriculture can be 'returned to nature'. This is the total amount land used for agriculture in China (Pikaar *et al.* 2018)

PROPAGATE THE GOOD NEWS

THE USER / THE REGULATOR

• The illiteracy of the public :

Microbes are generally considered to be a threat:

Microbio-Phobia

(Timmis et al. 2019) We must change this mindset via education

• The regulator tends to demand that every species is documented as if it was a pharmaceutical application / moreover the 'microbiome' should at all instances be constant (EFSA)

Teach / Communicate / Interact !!! with the public & EFSA

Conclusions on Feed & Food for the Future

With respect to the Paris agreements and the current planetary Climate Issues **Microbial Biotech** has a constantly <u>increasing role</u> to play

We must dare to speak out and *take leadership* on issues in relation to

- The climate issues (<u>the N2O issue of feed and food</u> proteins)
- The fossil fuel resp bio-based nitrogen fertilizers
- The CH4 issue of the current plant fiber route

10 REDUCED INEQUALITIES

6 CLEAN WATER AND SANITATI

3 GOOD HEALTH AND WELL-BEING

8 DECENT WORK AND ECONOMIC GROWTH

14 LIFE BELOW WATER

-0

13 CLIMATE ACTION

Conclusions on Feed & Food for the Future

 When dealing with feed and food, the messages of thinkers such as <u>Belasco</u>, <u>Suzman</u> and <u>Attenborough</u> have to be taken serious

*There are conservative and progressive consumers / it takes time to convince

"Go for more simple & strong agro-food -systems "

"Make more land available for 'ecosystems ' and their services

Conclusions on Feed & Food for the Future

There is a <u>mismatch</u> between the regulator and the innovator Twenty years ago , only in the EU : the GMO's got a total NO GO!?

Today : the Sustainable Development Goals can not be reached

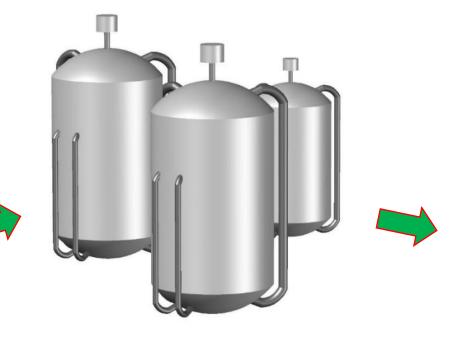
without the use of clever and efficient 'microbiomes

The current EU regulatory system is <u>hindering</u> progress / the EU should think and operate more positively about GMO's and also about Microbiomes

Conclusions on Feed & Food for the Futur

The protein shift, as part of the NEW DEAL, is a valuable goal.

The way to go is the FIBER BASED BIOREFINERY with


reliable MICROBIOME BASED FERMENTATIONS

We all have our 'HOLY GRAIL'

THIS IS MINE :

PLANT FIBER grown with BNI and possibly with BNF

NOVEL MICROBIOME BASED UPGRADING

VALUABLE FOOD

