

The Potential of Multispecies Grassland Swards for Climate Care Cattle Farming in the EU

Adam Cieslak¹, Mahmood Ul Hassan¹, Martyna Kozlowska¹, Pola Sidoruk¹, Dorota Lechniak²,

Jan Bocianowski³, Sylwester Slusarczyk⁴, Paul Hargreaves⁵, Diana Ruska⁶, Katja Klumpp⁷, Juliette Bloor⁷, RM Rees⁵

¹Poznan University of Life Sciences, Department of Animal Nutrition – Wolynska 33, 60-637 Poznan, Poland, ²Pozna n University of Life Sciences, Department of Genetics and Animal Breeding, – Wolynska 33 Poznan, Poland ³Pozna n University of Life Sciences, Department of Mathematical and Statistical Methods – Wojska Polskiego 28 Poznan, Poland ⁴Wroclaw Medical University, Department of Pharmaceutical Biology and Botany, – Wroclaw, Poland, ⁵SRUC, Scotland's Rural College – Scotland, United Kingdom, United Kingdom ⁶Latvia University of Life Sciences and Technologies – Jelgava, Latvia, ⁷INRAE, Universit e Clermont Auvergne – Institut National de la Recherche Agronomique - INRAE - Clermont Ferrand, France

The project has been financed by the European Union's Horizon 2020 research and innovation program under grant agreement no. 696356 for research conducted within the framework of the ERA-GAS/ERA-NET SUSAN/ICT-AGRI CCCfarming project.

Cattle as a major source of anthropogenic greenhouse gases (CH_4 , N_2O).

High fertilizer inputs from monoculture swards such as ryegrass and Italian ryegrass used in cattle nutrition.

Surplus of N supply contributing to water pollution and increased GHG emissions.

Sustainable alternative feeding practices for cattle

GREEN ENVIRONMENTAL APPROACHES

This study was conducted to explore the effects of multispecies grassland swards composed of perennial ryegrass (PRG), red clover (RC), chicory (C), and plantain (PLA) on in vitro ruminal fermentation and dry matter degradability (IVDMD).

HYPOTHESIS - The cultivation of PLA and C with RC would reduce the N fertilizer inputs, the ruminal CH₄, NH₃ concentrations and improve the in vitro DM digestibility.

GROUPS

CON: PRG+RFC

WITH FERTILIZER

EXP: PRG+RC, C+RC, and-

PLA+RC

WITHOUT FERTILIZERS

The experimental substrates were collected from the first cuts in 2021 and 2022 and mixed within the years in equal proportion in each group.

Hohenheim in vitro technique was used in the laboratory study.

RESULTS

(PLA+RC) - experimental group treatment:

- Decreased CH₄ production compared to the control,
- The ruminal NH₃-N, acetate, and butyrate concentrations, acetate-propionate ratio, and total protozoal and methanogen counts were reduced, propionate concentration increased in the experimental group.

CONCLUSION

PLA+RC group without fertilizers can be utilized as a sustainable alternative feeding source for climate-friendly cattle production.

The results showed that the