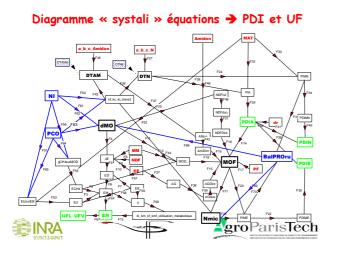

Rappels sur les modifications apportées dans le calcul des valeurs UF et PDI des aliments et des rations

D.SAUVANT(1), avec
P.NOZIERE(2), R.BAUMONT(2) et P.CHAPOUTOT(1)

(1) INRA-AgroParistech, UMR MoSAR, 16 rue C.Bernard, 75231 Paris (2) INRA Theix, UR Herbivores, 63122 5t Genès Champanelle



Méthode de travail 1. Intégration large des résultats de la littérature scientifique (exhaustive des pratiques alimentaires?) 2. Construction de bases de données spécifiques 3. Codages et études des méta-dispositifs 4. Interprétations statistiques par méta-analyses 5. Intégration des équations obtenues ? Evaluation de l'ensemble ?

Partition des equations is un modèle la mécaniste du rumen et du Tube digestif (D.Sauvant & al)

Structure compartimentale du modèle RATION NDFD>2mm NDFD<2mm Absorption AGV NDFnD>2mr PRSol -MICROB AMSol PRD -/ NDFnD<2mm PRnD Transfert ou transit Dégradation par les microbes **∆gro**ParisTech **INRA**

Intégration dans le simulateur « Sirar » pour évaluer la cohérence globale et simuler des rations (L. Buoconore & al)

PLAN

1. Digestion dans le rumen

2. Interactions digestives

3. Dégradation des Substrats

- Azote & amidon

- MO fermentée

4. Production de protéines microbiennes

5. La digestion dans les intestins, valeurs PDI

6. Prévision des teneurs en UFL & UFV

AgroParisTech

W BALPRORU » ET ETAT ENERGETIQUE
ET AZOTE DU RUMEN

BalProRu = MAT - MADUO (non NH3)
= MAT - PIA - MAMIC - MAENdo

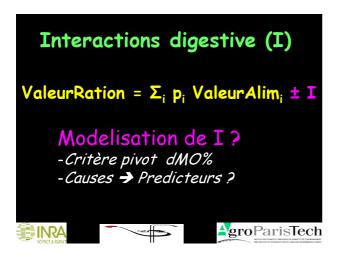
BalProRu = MAFerm - MAMIC - MAENdo

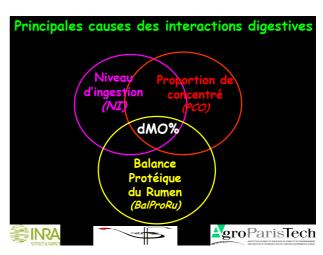
BalProRu = (PIMN - PIME)/0.8 - 14.2 (« apparent »)

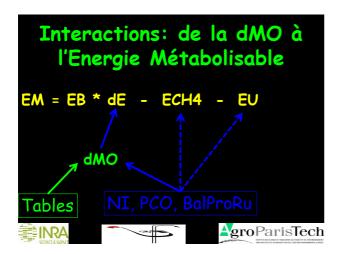
1. Digestion dans le rumen

2. Interactions digestives

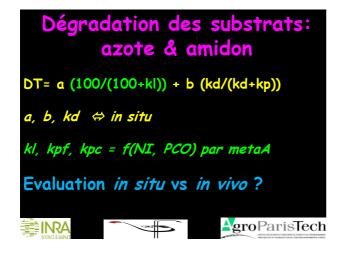
3. Dégradation des Substrats

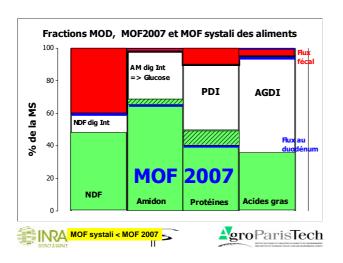

- Azote & amidon

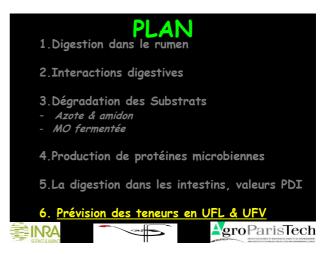

- MO fermentée

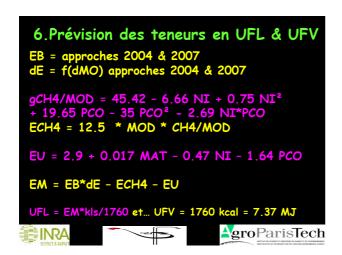

4. Production de protéines microbiennes

5. La digestion dans les intestins, valeurs PDI


6. Prévision des teneurs en UFL & UFV







CONCLUSIONS 1. Large actualisation, nouvelle conception des tables 2. Meilleure intégration des transits → dégradation N & Am 3. Quantification des interactions digestives 4. Nouvelle définition de la MOF 5. Prédiction plus précise de la production des protéines microbiennes 6. Prédiction des rejets CH4 et Nf+Nu 7. Plus simple que les « concurrents »: CNCP5, NorFor, NL AgroParisTech